Reconstruction of the values of algebraic function via polynomial Hermite-Pade m-system

А. В. Комлов
Математический институт им. В. А. Стеклова Российской академии наук, г. Москва

9 октября 2020 г.

For an arbitrary tuple of $m+1$ analytic germs $\left[f_{0}, f_{1}, \ldots, f_{m}\right]$ at some point x_{0} we introduce the polynomial Hermite-Pade m-system. For each $n \in \mathbb{N}$ this system consists of m tuples of polynomials. These tuples are numerated by the number $k=1, \ldots, m$. The k-th tuple consists of $\binom{m+1}{k}$ polynomials, which are called " k-th polynomials of Hermite-Pade m-system" of order n. We show, that for the case, when the germs $f_{j}=f^{j}$, where f is a germ of some algebraic function of order $m+1$, the ratio of some k-th polynomials of Hermite-Pade m-system converges (as $n \rightarrow \infty$) to the sum of the values of f on first k sheets of so-called Nuttall partition of its Riemann surface into sheets.

Note that the well known Hermite-Pade polynomials of types 1 and 2 are m-th and 1-st polynomials of Hermite-Pade m-system, respectively.

