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Section 1

in which systems of abstract tensor equations are
formulated and a solution is proposed.
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Easy Solution

yab _ 1 if ¢ = ab,
¢ 1 0 otherwise;

qor_ 1 ife=b&d=b"ab
od ) () otherwise.
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4-D Equations
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Solutions part 1

1if da,b, cs.t.
_ p = ((a’b7 C),O|O), q =
r = ((a,bc),0[0),& s =
0 otherwise;
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Solutions part 2

((1if Ja,b,cs.t.
i =

((070)7ab’0)7 J = ((CL:b)vO‘O)a
p= ((CL, b) <]C,O|O), q = ((0,0),Q‘C),
& r=((0,0),b|c),

| 0 otherwise;



i
Wp,q =

Solutions part 3

if da,b,cs.t

i =((b,¢),0[0), j=((0,0),(a<bd)lc),
l= ((0,0),@‘[)),

p= (( 70)7a|(bc))7 & q=
otherwise;



Solutions part 4

p.q,r __
Xs,uu - <

| 0 otherwise;

where, e.g., a<c = c tac, (a,b)<c= (a<c,b<dc),
and (alb) <c= (a<c)|(b<c)
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Algebraic setting

Let T denote a free module (vector space)
generated by pairs of elements (a,b) where

a,b € G — a group. More general situation later.
Read T as “together.” Let S denote the free
module generated by pairs c|d. Also ¢,d € G. The
letter S stands for “separated.” Let V =T & S.
Subsequently, we’ll generalize this module.



So when I write, e.g.

((1ifJa,b, cs.t.

1= ((0,0),&[)‘0),
p= ((a’ b) <¢, 0|0)a
& r=1((0,0),b|c),

| 0 otherwise;

Mi/ = ¢

b,q,r




So when I write, e.g.

((1ifJa,b, cs.t.
. i = ((0,0),ablc), j
Myar =94 § P = ((a,b)<c,0[0), ¢
& r=1((0,0),b|c),

| 0 otherwise;

= ((a7 b)? 0‘0>:
((0,0), ale),

the tensor M is a morph.

vevMdvevev.
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In general,

VeV vev,

vevMdyvevey,

VeveV i veV,

and

VelVel X veveV
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I soon want to given the geometric background
for these equations, and point out that, as usual,
these systems of equations generalize immediately
to all dimensions, and in an appropriate algebraic
context, we can find solutions.
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Section 2

First, foams are used to describe the
categorifications of sl3 invariants of classical
knots. Those foams are related to, but not
identical to, the foams considered here. I'll
describe and illustrate local crossings of n-foams.
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The Space Y™

Let A" ={ZeR"™2: Y 2, =1& 0 < z;}
denote the standard simplex. The space

Y™ C A" is defined as follows: Y? = (1, 1).
Take A7 = {Z € A" : ; = 0}. Embed a copy,
Y=t A7 Cone UM7Y"™! to the barycenter
b=—5(1,1,...,1) of A",

Yy = O (U2



The space Y?

=] F = = £ 9Da



e
The space Y3




Foam Definition

An n-dimensional foam is a compact top. sp.

X for which each point # € X has a nbhd. N(x)
that is homeom. to a nbhd. M of a point in Y.
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Local pictures of crossings

Now take
[Uj_ (AT x o x Y7 e ATY) R x {1)]

and project this into R"*!. The factor ¢ is in the
(n + 2)nd coordinate and represents the relative
height of each Y.



[(Yh—l % AJ2 '
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(Y7 A2 AT o x ATF) C R x {1

[(Ajl X A2 o VIl oo x A]k) C R" x {EH g

[(A% 5 A% e x AT e x Y1) € R x (k)]



(Y7 A2 AT o x ATF) C R x {1

[(Ajl X A2 o VIl oo x A]k) C R" x {EH g

[(A% 5 A% e x AT e x Y1) € R x (k)]

These project to a 0-dimensional multiple point
in R+,



The local crossings for (n + 1)-foams are found
among the Reideimeister/Roseman moves of the
embedded n-foams.



The local crossings for (n + 1)-foams are found
among the Reideimeister/Roseman moves of the
embedded n-foams. These crossings are the most
homologically interesting aspect of
group/quandle homology, as they represent,
generating chains in the chain groups.



Section 3

in which a discussion of categorification is used to
justify the ideas presented in the previous slide.
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New school categorification

New School: Knots — Alexander, Jones,
HOMFLYPT — FLYTHOMP polynomials.
KhoHo (or HF): Construct a homology theory
whose graded Euler characteristic gives the knot
polynomial.

Great invariants for classical knots and knot
cobordisms. Not so good for knotted closed
surfaces.
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Old school categorification

Different things can’t be equal.

Instead they are often related by a natural
isomorphism.

Use such isom. to study eguality relations b/2
objects.

e.g. congruence of geometric figures — group of
operators on a homogeneous space — invariants
of groups such as homology.

Instead of equality among morphisms, posit
2-morphisms that satisfy their own set of
relations. Climb the dimension ladder.
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Suppose V, W, etc. f.dim’l vec. sp. over IF.
Abstract

0

: Tensor

Formalism

IR ) 0
X=) Xe where e =|1|< jthpnrows
1o
0
so superscripts are row indices.

Write?:*. A i li RO
If W<———V islinear, Ale;) =) _ale,

1
i=1
=@~

Composition of linear maps is denoted by vertical juxtaposition.
C B A T
T U W \
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Write A= [A] . SoAx=biswritten
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Suppose V, W, etc. f.dim’l vec. sp. over IF.
Abstract

0

: Tensor

Formalism

N . 0
X=) Xe where g=[1|<jth nrows
0

0
so superscripts are row indices.

Write?:*. A i li RO
If W<———V islinear, Ale;) =) _ale,

1
i=1
Write A= . So Ax=b is written : @ .

Composition of linear maps is denoted by vertical juxtaposition.
C B
T U W A \ T
C(B(AK)) 5]

Vv



Suppose V, W, etc. f.dim’l vec. sp. over IF.
Abstract

0

: Tensor

Formalism

N . 0
X=) Xe where g=[1|<jth nrows
0

0
so superscripts are row indices.

Write?:*. A i li RO
If W<———V islinear, Ale;) =) _ale,

1
i=1
Write A= . So Ax=b is written : @ .

Composition of linear maps is denoted by vertical juxtaposition.
C B A T
T U W \ s

W
CBAK)) enc]
8]
Vv

Vv
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Example: A Frobenius alg. is a v. sp.V tog. w/ linear maps

v v IF
J;T unit, A T multi.,  ~ T non deg. pairing
IF vev vev
that satisfy:
2):‘ :&) here | denotes the identity map T
vey V
unital axiom
su
A - YT
associativity associativity of the pairing non degen’cy

We canuse \Uand /M to define comulti. and counit.

VU= -



Example: A Frobenius alg. is a v. sp.V tog. w/ linear maps

v v IF
J)T unit, A T multi,  ~ T non deg. pairing
IF VeV VeV
that satisfy:
2):‘ :&) here | denotes the identity map T
vey V
unital axiom
su
A -0 Y
associativity associativity of the pairing non degen’cy

We canuse \Uand /M to define comulti. and counit.
VAL T-n-

It's remarkable that most of the axiomatics for the alg.coalg str.
follows directly from the diagrammatics.
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e Objects <+ N={0,1,...} written in unary
notation.
e morphisms gen. by X, Y, A, I, X, U, N— here,
of course, | denotes the identity morphism.
e ® on objects is addition.

e ® on morphisms is (sort of) determined by
horizontal juxt.
but WAIT! Don’t assert identities among the
I-morphisms.
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These can point in either direction. Sometimes
the composition is invertible in either direction.
Sometimes not.

. Either direction?
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Section 4

in which an homology theory that encompasses
both quandle and group homology is outlined.
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YY (ab)e = a(be),

Y : (ab)<c = (a<c)(b<c),
YI: (a<b)<c = a<(be),

: (a<b)<c = (a<c)<(b<c).



A quandle

satisfies three axioms that correspond to the
Reidemeister moves:

I: (Va): a<a =

II: (Va,b)(dc) :  c<b a
I1T: (Ma,b,c): (a<b)<c = (a<c)<(bac).



A quandle

satisfies three axioms that correspond to the
Reidemeister moves:

I: (Va): a<a =

II: (Va,b)(dc) :  c<b a
I1T: (Ma,b,c): (a<b)<c = (a<c)<(bac).

We are interested in how the group G and its
associated quandle Conj(G) interact.
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Remark

There are related concepts for which the
homology sketched below applies, e.g.:
e G-families of quandles (I1JO)

e MCQ multiple conjugation quandles (Ishii,
See also CIST)

e Lebed’s qualgebras
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Homology of G-families of quandles was defined
to study handle-body knots. The higher dim’l
versions can be used to study foams.

Here we use, YY, YL, IY, and lll to define the
homological conditions.
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Slicing

Cut the interval [0,n] into integral pieces.

<]‘727"'7€1><€1+1,...7€1—|—€2>...

—1 j k
<i£+1i£><26+1n>
=1 =1 =1

Such a slice corresponds to a decomposition of
the n-ball into a product of simplices. There are
2"~1 ways to cut.
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Boundaries
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d(PQ) = (0P)Q + (=1)"™ " P(9Q).



Following Przytycki, one can observe that
00 0 = 0 in this context, if and only if

e a(bc) = (ab)c

e a<(bc) = (a<b)<c

e (ab)<c=(a<c)(b<c)

e (adb)<c=(a<c)<(b<c)
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Sample computations 2

0(1,2)3) = 9(1,2)3) + (1,2)<(3) = (1,2)
(2)(3) = (1-2)3) + (1)(3)

+(1<3,2<3) —(1,2)



Sample computations 2

0(1,2)(3) = 9(1,2)(3) + (1,2) «(3) — (1,2)

{
(2)(3) = (1-2)3) + (1)(3)
+(1<3,2<3) —(1,2)
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Sample computations 3

0(1)(2,3) = (2,3) —(2,3) — (1)0(2,3)
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Sample computations

O(1)(2)(3) = (2)(3) —(2)(3) — (1)9((2)(3))
= —(1<2)(3) + (1)(3)
+(1<3)(2<13) — (1)(2)
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Visual interlude

in which many (not all) of the

Reidemeister /Roseman moves for 2-foams are
indicated. Categorical hint: when certain
2-morphisms are defined to be invertible, these
moves arise.
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Critical points of the triple point set

A
Y
K \%/ \




Critical points of the intersection set 1

< d < >
e
f‘ !l'J Sl



Critical points of the intersection set 2




Critical points of the double point set




Int.

sheet

pts. b/2 branch /twist set and trnsvs.

£ 9Da



Not all 3-morphisms (or identities among 2
morphisms) are listed here.
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drawn them yet.



Not all 3-morphisms (or identities among 2
morphisms) are listed here. Some missing moves
are due to considerations on charts. I just haven’t
drawn them yet. Others are not listed here for
spacial considerations.
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The analogues in one higher dimensions

of the generating chains in homology. One bit of
the visual interlude is finished, but I want to
astound you a little more.
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Section 5

in which the polytopal duals to the generating
chains are formulated.
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In this section, I am going to review something
that is (sort-of) well-known. Namely, the
tetrahedral movie move (quadruple point move)
(a CI move in Kamada’s sense) is dual to the
permutahedron.
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This is the set of vectors in R"” with distinct
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t(e+ (e + 1)e(e+1).



Permutahedron

In R" consider the convex hull of

{(c(1),0(2),...,0(n)):0€X,}.

This is the set of vectors in R"” with distinct
coordinates taken from {1,2,...,n}. Edges of the
polytope can be labeled by adjacent
transpositions:

t = (4,7 + 1). Hexagonal faces are

t(e+ Di(e + Di(e + 1). etc.
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Next we’ll use the graphical structure to
formulate a series of Abstract tensor equations.
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One of these equations is the Zamolodchikov
tetrahedral equation.
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In 3-D
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yab _ 1 if ¢ = ab,
¢ 1 0 otherwise;

qor_ 1 ife=b&d=b"ab
od ) () otherwise.
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1if da,b,cs.t.
KP4 — p= ((abv C)a O|0)7
s r = ((a, bc),0]0), &
0 otherwise;



(1if Ja,b,cs.t.
g i =((0,0),ablc), j=(
Myir =19 § P=((a,0)<c,0[0), ¢q=(

& r=1((0,0),b|c),
| 0 otherwise;




11fE|abcst

N 0= ((b,¢),000), 7= ((0,0), (a<d)le),
WERE = ¢ = 00 ,alb),
p= 00 ), al(be)), & g =((b,c),0]0),

0 herwise;




p.q,r __
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<

| 0 otherwise;

where, e.g., a<c = c tac, (a,b)<c= (a<c,b<dc),
and (alb) <c= (a<c)|(b<c)



These tensors form a solution set over a module
whose basis is determined by the underlying
algebraic structure precisely because 0 o 9 = 0 in
the chain complex.



Thanks

Thank you for your attention!



