Homology groups of certain finite quandles

Yongju Bae (Jointly with Seonmi Choi)

Kyungpook National University, Korea

RCCKT-2017

4 July 2017

Basic definitions and notions

Definition

A *quandle* is a nonempty set X together with a binary operation $*: X \times X \to X$ which satisfies the following three properties.

- (i) For all $a \in X$, a * a = a,
- (ii) For all $a, b \in X$, $\exists_1 c \in X$ s.t a = c * b,
- (iii) For all $a, b, c \in X$, (a * b) * c = (a * c) * (b * c).

Def. A *rack* is a nonempty set X with a binary operation $*: X \times X \to X$ satisfying (ii), (iii) conditions.

• The function $\sigma_b: X \to X$, defined by $\sigma_b(x) = x * b$ for all $x \in X$, is a permutation of X.

In the view point of a family of permutations, one can restate the definition of a quandle as follows.

Definition

A quandle is a nonempty set X with the quandle structure $\Sigma: X \to Map(X,X)$, defined by $x \mapsto \sigma_x$, satisfying the following conditions.

- (i) For all $x \in X$, $\sigma_x(x) = x$.
- (ii) For all $x \in X$, σ_x is a permutation of X.
- (iii) For all $x, y \in X$, $\sigma_x \sigma_y \sigma_x^{-1} = \sigma_{\sigma_x(y)}$

In particular, if $X = \{x_1, x_2, \dots, x_n\}$ is a finite set, we denote a quandle (X, Σ) by a sequence $[\sigma_1, \sigma_2, \dots, \sigma_n]$ of permutations σ_i corresponding to x_i .

Example

- Any set X with the binary operation a * b = a for all a, b ∈ X is a quandle, which is called a trivial quandle.
- For the set X = {1, 2, · · · , n}, define a binary operation
 *: X × X → X by i * j = 2j − i (mod n) for all i, j ∈ X. The pair
 (X,*) forms a quandle, which is called the *dihedral quandle* of order n and is denoted by R_n.

*e	1	2	3		R_3	1	2	3
1	1	1	1	-	1	1	3	2
2	2				2	3	2	1
3	3	3	3		3	2	1	3
	1]	[(23),(13),(12)]						

Definition

Let (X,*) and (X',*') be two quandles.

- A quandle homomorphism is a function $f: X \to X'$ if f(x * y) = f(x) *' f(y) for all $x, y \in X$.
- A *quandle isomorphism* is a quandle homomorphism $f: X \to X'$ if it is bijective.
- A quandle automorphism of X is a quandle isomorphism from (X,*) onto itself.
- The *automorphism group* Aut(X) of X is the set of all quandle automorphisms of X.
- The *inner automorphism group Inn*(X) of X is the subgroup of Aut(X) generated by $\{\sigma_b, \sigma_b^{-1} | b \in X\}$.

Definition

Let X be a quandle and $x \in X$. From the natural action of Inn(X) on X, one can define

- $Orb(x) = \{ y \in X \mid y = f(x), f \in Inn(X) \}$: the *orbit* of x.
- $Orb(X) = \{ Orb(x) \mid x \in X \}$: the set of all orbits of X.

Under the operation $*: Orb(X) \times Orb(X) \to Orb(X)$ defined by Orb(x) * Orb(y) = Orb(x * y), Orb(X) is the *trivial* quandle, which is called the *orbit quandle* of X.

Rack and Quandle homology groups of (X, *)

Definition

- (X,*): a quandle (or a rack)
- $C_n^R(X)$ = the free abelian group generated by $\{(x_1, x_2, \dots, x_n) | x_i \in X\}$.
- $\partial_n: C_n^R(X) \to C_{n-1}^R(X)$: the homomorphism defined by

$$\partial_n(x_1, x_2, \dots, x_n) = \sum_{i=2}^n (-1)^i [(x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_n)]$$

$$-(x_1 * x_i, x_2 * x_i, \cdots, x_{i-1} * x_i, x_{i+1}, \cdots, x_n)]$$

for $n \ge 2$ and $\vartheta_n = 0$ for $n \le 1$.

• $C_*^R(X) = \{C_n^R(X), \partial_n\}$: a chain complex

Rack and Quandle homology groups of (X, *)

Definition

•
$$C_n^D(X) = \begin{cases} <\{(x_1, x_2, \dots, x_n) | x_i = x_{i+1}\} >, & n \geqslant 2, \\ 0, & \text{otherwise} \end{cases}$$

- $C^D_*(X) = \{C^D_n(X), \partial_n\}$: a sub-complex of $C^R_*(X)$
- $C_n^Q(X) = C_n^R(X)/C_n^D(X)$
- $C_n^Q(X) = \{C_n^Q(X), \partial_n'\}$: a chain complex

For an abelian group G, one can obtain the homology groups

- $H_n^R(X;G)$: the nth rack homology group
- $H_n^D(X;G)$: the nth degeneration homology group
- $H_n^Q(X;G)$: the nth quandle homology group

History

Prop. (Carter-Jelsovsky-Kamada-Saito, 2001) Let X be a quandle. Then there is a long exact sequence

$$\cdots \xrightarrow{\vartheta_*} H^D_n(X;G) \xrightarrow{i_*} H^R_n(X;G) \xrightarrow{j_*} H^Q_n(X;G) \xrightarrow{\vartheta_*} H^D_{n-1}(X;G) \to \cdots.$$

which is natural with respect to homomorphisms induced from quandle homomorphisms.

- Prop. (Carter-Jelsovsky-Kamada-Saito,2001) Let X be a quandle with $|\mathit{Orb}(X)| = m$. Then
 - (1) $H_1^D(X) = 0$,
 - (2) $H_1^R(X) = H_1^Q(X) = \mathbb{Z}^m$,
 - (3) $H_2^D(X) = \mathbb{Z}^m$.
- Prop. (Carter-Jelsovsky-Kamada-Saito, Litherland-Nelson,2003) The boundary operators $\mathfrak{d}_*: H_n^Q(X) \to H_{n-1}^D(X)$ are the 0-maps, so that the sequence is decomposed into short exact sequences

$$0 \to H_n^D(X) \to H_n^R(X) \to H_n^Q(X) \to 0.$$

Free part

Note that $H_n^W(X)$, (W = R, D, Q), is a finitely generated abelian group. The free part of $H_n^W(X)$, (W = R, D, Q) is known as follows:

Prop. (Litherland-Nelson, Etingof-Grana, 2003) Let X be a finite rack and Orb(X) the orbit quandle of X.

- $rank(H_n^D(X)) = rank(H_n^W(Orb(X))).$ • $rank(H_n^R(X)) = rank(H_n^W(Orb(X))).$
- $rank(H_n^Q(X)) = rank(H_n^W(Orb(X))).$

Rmk. For the trivial quandle T_m of order m,

- $rank(H_n^D(T_m)) = m^n m(m-1)^{n-1}$.
- $rank(H_n^R(T_m)) = m^n$,
- $rank(H_n^Q(T_m)) = m(m-1)^{n-1}$.

Torsion part

- Prop. (Litherland-Nelson, 2003) For a finite rack X with homogeneous orbits, the torsion subgroup of $H_n^W(X)$ is annihilated by $|X|^n$ where W=R, D and Q.
- Prop. (Etingof-Grana, 2003) For a finite rack X, the only primes which can appear in the torsion of $H_n^R(X)$ are those dividing |Inn(X)|.
- Prop. (Niebrzydowski-Przytycki, 2009) For any n > 1, $torH_n^R(R_3)$ is annihilated by 3.
- Conj. (Niebrzydowski-Przytycki,2009) For an odd p, $torH_n^Q(R_p)=\mathbb{Z}_p^{f_n}$, where $f_n=f_{n-1}+f_{n-3}$ and f(1)=f(2)=0, f(3)=1.
- Prop. (Nosaka, Przytycki-Yang,2015) For a finite quasigroup quandle X, $torH_n^R(X)$ is annihilated by |X|.

Consider the following operation table

*	1	2	3	4	5	6	7	8
1	1	1	2	2	1	1	1	1
2	2	2	1	1	2	2	2	2
3	4	4	3	3	3	3	3	3
4	3	4 _ 3_	4	4	4	4	4	4
5	5	_ ₅ _	_ ₅ _	⁻ 5	5	-8 -	6	7
6	6	6	6	6	7	6	8	5
7	7	7	7	7	8	5	7	6
8	8	8	8	8	6	7	5	8

Notice that the sub-tables in diagonal are the operation table for two quandles R_4 and C_4 , while the sub-tables in off-diagonal are trivial.

R_4	1	2	3	4
1	1	1	2	2
2	2	2	1	1
3	4	4	3	3
4	3	3	4	4

C_4	1	2	3	4
1	1	4	2	3
1 2 3	3	2	4	1
3	4		3	2
4	2	3	1	4

Recall that for any quandle X, $H_1^R(X) = \mathbb{Z}^m$ where m = |Orb(X)|.

Lemma

For two finite quandles $(Q_1, *_1)$ and $(Q_2, *_2)$, let (X, *) be a quandle for which table is as follows.

Q_1	id
id	Q_2

Then

$$torH_2^R(X) = torH_2^R(Q_1) \oplus torH_2^R(Q_2)$$

Indeed, $H_2^R(X) = H_2^R(Q_1) \oplus H_2^R(Q_2) \oplus \mathbb{Z}^{2|Orb(Q_1)||Orb(Q_2)|}$.

Sketch of proof. Let $X = \{1, \dots, n, n+1, \dots, n+m\}$.

The free abelian group $C_2^R(X)$ is generated by

(1, 1)		(1, n)	(1, n + 1)		(1, n+m)
:	٠	:	:	٠	:
(n, 1)		(n, n)	(n, n+1)		(n, n+m)
(n+1,1)		(n+1, n)	(n+1,n+1)		$(n+1, i_2-1)$
:	٠.	:	:	٠	:
(n + m, 1)		(n+m,n)	(n+m,n+1)		(n+m,n+m)

Consider the image of ∂_2 and ∂_3 , respectively.

$$\partial_{2}(x,y) = (x) - (x*y) = \begin{cases} (x) - (x*_{1}y), & 1 \leqslant x \leqslant n, 1 \leqslant y \leqslant n; \\ 0, & 1 \leqslant x \leqslant n, n+1 \leqslant y \leqslant n+m; \\ 0, & n+1 \leqslant x \leqslant n+m, 1 \leqslant y \leqslant n; \\ (x) - (x*_{2}y), & n+1 \leqslant x \leqslant n+m, n+1 \leqslant y \leqslant n+m, \end{cases}$$

$$\partial_{3}(x,y,z) = (x,z) - (x*y,z) - (x,y) + (x*z,y*z)$$

$$\int_{0}^{(x,z) - (x*_{1}y,z) - (x,y) + (x*_{1}z,y*_{1}z), 1 \leqslant x \leqslant n, 1 \leqslant y \leqslant n, 1 \leqslant z \leqslant n;}$$

$$= \begin{cases} (x,z) - (x*_1y,z) - (x,y) + (x*_1z,y*_1z), & 1 \leqslant x \leqslant n, 1 \leqslant y \leqslant n, 1 \leqslant z \leqslant n; \\ (x,z) - (x*_1y,z), & 1 \leqslant x \leqslant n, 1 \leqslant y \leqslant n, n+1 \leqslant z \leqslant n+m; \\ -(x,y) + (x*_1z,y), & 1 \leqslant x \leqslant n, n+1 \leqslant y \leqslant n+m, 1 \leqslant z \leqslant n; \\ -(x,y) + (x,y*_2z), & 1 \leqslant x \leqslant n, n+1 \leqslant y \leqslant n+m, n+1 \leqslant z \leqslant n+m; \\ -(x,y) + (x,y*_1z), & n+1 \leqslant x \leqslant n+m, 1 \leqslant y \leqslant n, 1 \leqslant z \leqslant n; \\ -(x,y) + (z*_2z,y), & n+1 \leqslant x \leqslant n+m, 1 \leqslant y \leqslant n, n+1 \leqslant z \leqslant n+m; \\ (x,z) - (x*_2y,z), & n+1 \leqslant x \leqslant n+m, n+1 \leqslant y \leqslant n+m, 1 \leqslant z \leqslant n; \\ (x,z) - (x*_2y,z) - (x,y) + (x*_2z,y*_2z), & n+1 \leqslant x \leqslant n+m, n+1 \leqslant y \leqslant n+m, n+1 \leqslant z \leqslant n+m. \end{cases}$$

(1, 1)		(1, n)	(1, n+1)		(1, n+m)
:	٠.	:	:		:
(n, 1)		(n, n)	(n, n+1)		(n, n+m)
(n+1,1)		(n+1, n)	(n+1,n+1)		(n+1,n+m)
:	٠.	:	:	٠.	:
(n+m,1)		(n+m,n)	(n+m,n+1)		(n+m,n+m)

$H_2^R(Q_1)$	$ \mathit{Orb}(\mathit{Q}_1) \times \mathit{Orb}(\mathit{Q}_2) $
$ \mathit{Orb}(\mathit{Q}_2) \times \mathit{Orb}(\mathit{Q}_1) $	$H_2^R(Q_2)$

$$\therefore \textit{torH}_2^R(X) = \textit{torH}_2^R(\textit{Q}_1) \oplus \textit{torH}_2^R(\textit{Q}_2).$$

(In fact,
$$H_2^R(X) = H_2^R(Q_1) \oplus H_2^R(Q_2) \oplus \mathbb{Z}^{2|Orb(Q_1)||Orb(Q_2)|}$$
.)

Example

Let (X,*) be a quandle which is a disjoint union of two quandles of order 4.

P. | 1 2 3 4 C. | 1 2 3 4

7.4	1 -	~	J	-			1				
1	1	1	2	2		1	1	4	2	3	
2	2	2	1	1		2	3	2	4	1	\Rightarrow
3	4	4	3	3		3	4	1	3	2	
1 2 3 4	3	3	4	4		4	3 4 2	3	1	4	
	*	1	2	3	4	5	6	7	8		
	1	1	1	2	2	1	1	1	1	-	

1	1	1	2	2	1	1	1	1
2	2	2	1	1	2	2	2	2
2 3 4	4	4	1 3 -4- 6	3	3	3	3	3
4	3	3	4	4	4	4	4	4
5	5	⁻ 5	_ 5_	⁻ 5 ⁻	_5 _	-8 -	6	7
6	6	6	6	6 I	7	6	8	5
7	7	6 7 8	7 8	7	8	5	7	6
8	8	8	8	8	6	6 5 7	5	8

It is known that $torH_2^R(R_4)=\mathbb{Z}_2^2$ and $torH_2^R(C_4)=\mathbb{Z}_2$. Hence we have $torH_2^R(X)=\mathbb{Z}_2^3$. In fact,

$$H_2^R(X) = (\mathbb{Z}^4 \oplus \mathbb{Z}_2^2) \oplus (\mathbb{Z} \oplus \mathbb{Z}_2) \oplus \mathbb{Z}^{2 \times 2 \times 1} = \mathbb{Z}^9 \oplus \mathbb{Z}_2^3.$$

Now, consider the following two quandle tables, in which two diagonals and the lower off-diagonal are trivial.

*	1	2	3	4	5	6	_ 7_
1	1	1	1	1	1	1	2
2	2	2	2	2	2	2	J
3	3	3	3	3	3	3	1
4	4	4	4	4	4	4	5
5	5	5	5	5	5	5	4 6
6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7 7

*	1	2	3	4	5	6	7
1	1	1	1	1	1	2	3
2	2	2	2	2	2	3	1
3	3	3	3	3	3	1	
4	4	4	4	4	4	9	4
5	5	5	5	5	5	4	5
6	6	6	6	6	6		
7	7	7	7	7	7	7	7

Proposition (B. & Kim)

Let $X = \{1, \dots, k, k+1, \dots, k+m\}$ and $\tau_{k+1}, \dots, \tau_{k+m} \in S_k$. Consider the operation table in the following form;

$$\frac{id}{id} \frac{R}{id} = \frac{1 \cdots 1}{1 \cdots 1} \frac{\tau_{k+1} \cdots \tau_{k+m}}{1 \cdots 1}$$

Then X is a quandle under the operation if and only if $\tau_i \tau_j = \tau_j \tau_i$, for all i, j.

Theorem (B. & Choi)

Let $\tau \in S_{n-1}$ and let $\sigma = (\tau)(n) \in S_n$. Let $X = \{1, 2, \dots, n\}$ be the quandle whose operation table is given as follows.

Then $H_2^R(X)$ and $H_3^R(X)$ are torsion-free, and hence

$$H_2^R(X) = \mathbb{Z}^{k^2}$$
 and $H_3^R(Q) = \mathbb{Z}^{k^3}$

where k is the number of disjoint cycles of σ .

Sketch of proof for $H_3^R(X)$.

Suppose that

$$\sigma = (1 \ 2 \cdots i_1)(i_1 + 1 \ i_1 + 2 \cdots i_2) \cdots (i_{k-2} + 1 \ i_{k-2} + 2 \cdots n - 1)(n).$$

Im∂₄

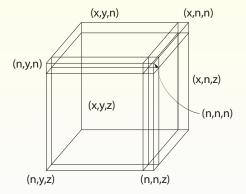
$$\mathfrak{d}_4(x,y,z,w) = (x,z,w) - (x*y,z,w) - (x,y,w) + (x*z,y*z,w) + (x,y,z) - (x*w,y*w,z*w)$$

- 1. $\partial_4(x, y, z, w) = 0$
- 2. $\partial_4(x, y, z, n) = (x, y, z) (x * n, y * n, z * n)$
- 3. $\partial_4(x, y, n, w) = -(x, y, w) + (x * n, y * n, w)$
- 4. $\partial_4(x, y, n, n) = 0$
- 5. $\partial_4(x, n, z, w) = (x, z, w) (x * n, z, w)$
- 6. $\partial_4(x, n, z, n) = (x, z, n) (x * n, z, n) + (x, n, z) (x * n, n * n, z * n)$
- 7. $\partial_4(x, n, n, w) = 0$
- 8. $\partial_4(x, n, n, n) = (x, n, n) (x * n, n, n)$
- 9. $\partial_4(n, y, z, w) = 0$
- 10. $\partial_4(n, y, z, n) = (n, y, z) (n * n, y * n, z * n)$
- 11. $\partial_4(n, y, n, w) = -(n, y, w) + (n * n, y * n, w)$
- 12. $\partial_4(n, y, n, n) = 0$
- 13. $\partial_4(n, n, z, w) = 0$
- 14. $\partial_4(n, n, z, n) = (n, n, z) (n * n, n * n, z * n)$
- 15. $\partial_4(n, n, n, w) = 0$
- 16. $\partial_4(n, n, n, n) = 0$

For every $x, y, z, w = 1, 2, \dots, n-1$,

$$\begin{cases} \partial_4(x,y,z,n) = & (x,y,z) - (\sigma(x),\sigma(y),\sigma(z)) \\ \partial_4(x,y,n,w) = & -(x,y,w) + (\sigma(x),\sigma(y),w) \\ \partial_4(x,n,z,w) = & (x,z,w) - (\sigma(x),z,w) \end{cases} \\ \partial_4(x,n,z,n) = & (x,z,n) - (\sigma(x),z,n) + (x,n,z) - (\sigma(x),n,\sigma(z)) \\ \partial_4(x,n,n,n) = & (x,n,n) - (\sigma(x),n,n) \\ \partial_4(n,y,z,n) = & (n,y,z) - (n,\sigma(y),\sigma(z)) \\ \partial_4(n,y,n,w) = & -(n,y,w) + (n,\sigma(y),w) \\ \partial_4(n,n,z,n) = & (n,n,z) - (n,n,\sigma(z)) \end{cases}$$

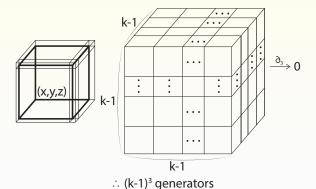
The values of $Im\partial_4$ and $Ker\partial_3$ are depend to the cycles of σ .



Case 1. (x, y, z)

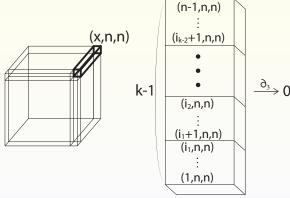
• $Im\partial_4$: $(x, y, z) = (\sigma(x), \sigma(y), \sigma(z)) = (\sigma(x), \sigma(y), z) = (\sigma(x), y, z)$

• $Ker \partial_3 : \partial_3(x, y, z) = 0$



Case 2. (x, n, n)

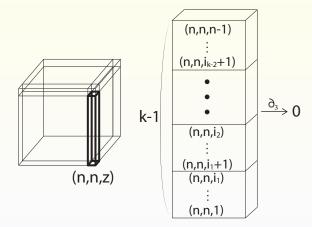
- $Im \partial_4 : (x, n, n) = (\sigma(x), n, n)$
- $Ker \partial_3 : \partial_3(x, n, n) = 0$



∴ (k-1) generators

Case 3. (n, n, z)

- $Im \partial_4 : (n, n, z) = (n, n, \sigma(z))$
- $Ker \partial_3 : \partial_3(n, n, z) = 0$

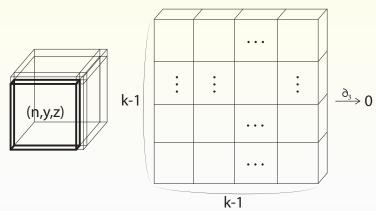


∴ (k-1) generators

Case 4. (n, y, z)

•
$$Im \partial_4 : (n, y, z) = (n, \sigma(y), \sigma(z)) = (n, \sigma(y), z)$$

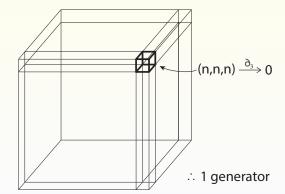
• $Ker \partial_3 : \partial_3(n, y, z) = 0$



∴ (k-1)² generators

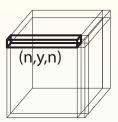
Case 5. (*n*, *n*, *n*)

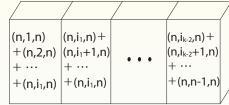
- Im∂₄ : No relation
- $Ker \partial_3 : \partial_3(n, n, n) = 0$



Case 6. (n, y, n)

- *Im*∂₄ : No relation
- $Ker \partial_3$: $\partial_3(n, y, n) = -(n, y) + (n, \sigma(y))$ \Rightarrow Solve $\partial_3\left(\sum_{y=1}^{n-1} \beta_y(n, y, n)\right) = 0$.

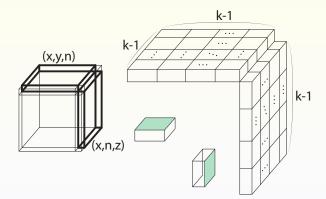




∴ (k-1) generators

Case 7. (x, z, n), (x, n, z)

- $Im\partial_4$: $(x, z, n) (\sigma(x), z, n) + (x, n, z) (\sigma(x), n, \sigma(z)) = 0$
- $Ker\partial_3$: $\partial_3(x, z, n) = -(x, z) + (\sigma(x), \sigma(z))$ $\partial_3(x, n, z) = (x, z) - (\sigma(x), z)$



Im∂₄ of Case 7

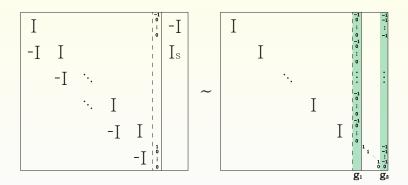
• Rows : $r_{1,1}, r_{1,2}, \cdots, r_{l_t, l_s}$ Columns : (x, n, z), (x, z, n)(oder: $(l_t, l_s, n), (l_t, l_s - 1, n), \cdots, (1, 1, n) || (l_t, n, l_s), (l_t, n, l_s - 1), \cdots, (1, n, 1)$)

where
$$I = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$
 and $I_s = \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & \cdots & 0 & 0 \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 1 & 0 \end{bmatrix}$

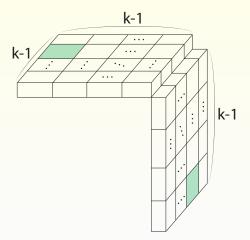
Im∂₄ of Case 7

where
$$I - I_s = \begin{bmatrix} 1 & 1 & \cdots & 0 & 0 \\ -1 & 1 & \cdots & 0 & 0 \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \ddots & 1 & 0 \\ 0 & 0 & \cdots & -1 & 1 \end{bmatrix}$$
 and $U = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & -1 \\ 0 & 1 & \cdots & 0 & -1 \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -1 \\ 0 & 0 & \cdots & 0 & 0 \end{bmatrix}$

Ker∂₃ of Case 7

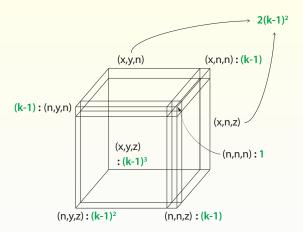


Case 7. (x, z, n), (x, n, z)



∴ 2(k-1)² generators

$$H_3^R(X)$$



∴ k³ generators & No relations

Example

Let (X, *) be a quandle as follows.

By the above theorem, one can see that $H_2^R(X)$ and $H_3^R(X)$ are torsion-free, and hence

$$H_2^R(X) = \mathbb{Z}^{4^2} = \mathbb{Z}^{16} \text{ and } H_3^R(X) = \mathbb{Z}^{4^3} = \mathbb{Z}^{64}.$$

Theorem (B. & Choi)

Let $\tau \in S_{n-2}$ and let $\sigma = (\tau)(n-1)(n) \in S_n$. Let $X = \{1, 2, \dots, n\}$ be the quandle whose operation table is given as follows.

Then $H_2^R(X)$ is torsion-free. (Indeed, $H_2^R(Q) = \mathbb{Z}^{k^2}$, where k is the number of disjoint cycles of σ .)

Sketch of proof.

- Put $\sigma = \tau(n-1)(n) \in S_n$.
- $\sigma = (1 \ 2 \cdots i_1)(i_1+1 \ i_1+2 \cdots i_2) \cdots (i_{k-3}+1 \ i_{k-3}+2 \cdots n-2)(n-1)(n)$.

$H_2^R(X)$ is isomorphic to \mathbb{Z}^{k^2}

(1,1)		$(1, i_1 - 1)$		(1, i _{k-3})		(1, n-2)		
	1.				1.	:	$\sum_{x=1}^{i_1-1} (x, n-1)$	$-(1, n-1) - (2, n-1) - \cdots$
$\frac{(i_1-1,1)}{(i_1,1)}$		$(i_1 - 1, i_1 - 1)$ $(i_1, i_1 - 1)$		$(i_1 - 1, i_{k-3})$ (i_1, i_{k-3})		$(i_1 - 1, n - 2)$ $(i_1, n - 2)$		-(i, n-1) + (1, n)
	٠.,				4,		$\sum_{x=i_1}^{i_2-1} (x, n-1)$	$-(i_1, n-1) - (i_1+1, n-1) - \cdots$
$(i_2-1,1)$		(i_2-1,i_1-1)		(i_2-1,i_{k-3})		$(i_2-1, n-2)$	•	$-(i_1+i-1,n-1)+(1,n)$
	1	:	٠.	:	:	:		:
$(i_{k-3}, 1)$		(i_{k-3}, i_1-1)		(i_{k-3}, i_{k-3})		$(i_{k-3}, n-2)$		
1 :	÷.	Ė		i	٠.	Ė	$\sum_{x=i_{k-3}}^{n-2} (x, n-1)$	$-(i_{k-3}, n-1) - (i_{k-3}+1, n-1) - \cdots$
(n-2,1)		$(n-2,i_1-1)$		$(n-2, i_{k-3})$		(n-2, n-2)		$-(i_{k-3}+i-1,n-1)+(1,n)$
(n-1,1)		$(n-1, i_1-1)$		$(n-1, i_{k-3})$		(n-1, n-2)	(n-1, n-1)	(n-1, n)
(n, 1)		$(n, i_1 - 1)$		(n, i_{k-3})		(n, n-2)	(n, n-1)	(n, n)

Example

In the following quandle X, the permutation in the last column is the square of the permutation in 6—th column, and hence X is a quandle.

*	1	2	3	4	5	6	7
1	1	1	1	1	1	2	3
2	2	2	2	2	_	3	1
3	3	3	3	3	3	1	2
4	4	4	4	4		5	4
- \frac{5}{6} -	5	5	5	5	5	4	5
6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7

[1,1,1,1,1,1,(123)(45)(6)(7),(132)(4)(5)(6)(7)]

By the previous theorem, one can see that $H_2^R(X)$ is torsion-free, and hence $H_2^R(X)=\mathbb{Z}^{4^2}=\mathbb{Z}^{16}$, because $\sigma=(123)(45)(6)(7)$ consists of 4 disjoint cycles. Indeed, $H_2^D(X)=\mathbb{Z}^4$, $H_2^R(X)=\mathbb{Z}^{4^2}=\mathbb{Z}^{16}$ and $H_2^Q(X)=\mathbb{Z}^{12}$.

Questions

1. For two finite quandles $(Q_1, *_1)$ and $(Q_2, *_2)$, let (X, *) be the quandle whose operation table is given as follows.

$$Q_1$$
 id id Q_2

Does the equality $torH_n^R(X) = torH_n^R(Q_1) \oplus torH_n^R(Q_2)$ hold for $n \geqslant 4$?

2. Let *X* be the quandle whose operation table is one of the followings.

$1 \cdots 1$	τ	or	1
$1 \cdots 1$	1	Oi	1

or $\begin{vmatrix} 1 \cdots 1 & \tau \ \tau' \\ 1 \cdots 1 & 1 \end{vmatrix}$

Is $H_n^R(X)$ torsion-free for $n \ge 3$?

